_cross_correlation¶
- _cross_correlation(a: numpy.ndarray, b: numpy.ndarray, maxlags: Optional[int] = None, normed: bool = True) Tuple[numpy.ndarray, numpy.ndarray] [source]¶
Calculate cross correlation between arrays.
This implementation is slow: O(n^2), but can properly ignore NaNs.
- Parameters
a (numpy.ndarray) – first array, should be equal length with b
b (numpy.ndarray) – second array, should be equal length with a
maxlags (Optional[int]) – number of lags to compare, should be >=1 and < len(a)
normed (bool) – should correlations be normed or not
- Returns
lags: array of size
maxlags * 2 + 1
represents for which lags correlations are calculated inresult
result: array of size
maxlags * 2 + 1
represents found correlations
- Return type
lags, result
- Raises
ValueError: – lengths of
a
andb
are not the sameValueError: – parameter
maxlags
doesn’t satisfy constraints