AbstractPipeline¶
- class AbstractPipeline[source]¶
Bases:
etna.core.saving.AbstractSaveable
Interface for pipeline.
- Inherited-members
Methods
backtest
(ts, metrics[, n_folds, mode, ...])Run backtest with the pipeline.
fit
(ts)Fit the Pipeline.
forecast
([ts, prediction_interval, ...])Make a forecast of the next points of a dataset.
load
(path)Load an object.
Get hyperparameter grid to tune.
predict
(ts[, start_timestamp, ...])Make in-sample predictions on dataset in a given range.
save
(path)Save the object.
- abstract backtest(ts: etna.datasets.tsdataset.TSDataset, metrics: List[etna.metrics.base.Metric], n_folds: Union[int, List[etna.pipeline.base.FoldMask]] = 5, mode: Optional[str] = None, aggregate_metrics: bool = False, n_jobs: int = 1, refit: Union[bool, int] = True, stride: Optional[int] = None, joblib_params: Optional[Dict[str, Any]] = None, forecast_params: Optional[Dict[str, Any]] = None) Tuple[pandas.core.frame.DataFrame, pandas.core.frame.DataFrame, pandas.core.frame.DataFrame] [source]¶
Run backtest with the pipeline.
If
refit != True
and some component of the pipeline doesn’t support forecasting with gap, this component will raise an exception.- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset to fit models in backtest
metrics (List[etna.metrics.base.Metric]) – List of metrics to compute for each fold
n_folds (Union[int, List[etna.pipeline.base.FoldMask]]) – Number of folds or the list of fold masks
mode (Optional[str]) – Train generation policy: ‘expand’ or ‘constant’. Works only if
n_folds
is integer. By default, is set to ‘expand’.aggregate_metrics (bool) – If True aggregate metrics above folds, return raw metrics otherwise
n_jobs (int) – Number of jobs to run in parallel
refit (Union[bool, int]) –
Determines how often pipeline should be retrained during iteration over folds.
If
True
: pipeline is retrained on each fold.If
False
: pipeline is trained only on the first fold.If
value: int
: pipeline is trained everyvalue
folds starting from the first.
stride (Optional[int]) – Number of points between folds. Works only if
n_folds
is integer. By default, is set tohorizon
.joblib_params (Optional[Dict[str, Any]]) – Additional parameters for
joblib.Parallel
forecast_params (Optional[Dict[str, Any]]) – Additional parameters for
forecast()
- Returns
metrics_df, forecast_df, fold_info_df – Metrics dataframe, forecast dataframe and dataframe with information about folds
- Return type
Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]
- abstract fit(ts: etna.datasets.tsdataset.TSDataset) etna.pipeline.base.AbstractPipeline [source]¶
Fit the Pipeline.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with timeseries data
- Returns
Fitted Pipeline instance
- Return type
- abstract forecast(ts: Optional[etna.datasets.tsdataset.TSDataset] = None, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), n_folds: int = 3, return_components: bool = False) etna.datasets.tsdataset.TSDataset [source]¶
Make a forecast of the next points of a dataset.
The result of forecasting starts from the last point of
ts
, not including it.- Parameters
ts (Optional[etna.datasets.tsdataset.TSDataset]) – Dataset to forecast. If not given, dataset given during :py:meth:
fit
is used.prediction_interval (bool) – If True returns prediction interval for forecast
quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% taken to form a 95% prediction interval
n_folds (int) – Number of folds to use in the backtest for prediction interval estimation
return_components (bool) – If True additionally returns forecast components
- Returns
Dataset with predictions
- Return type
- abstract params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get hyperparameter grid to tune.
- Returns
Grid with hyperparameters.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]
- abstract predict(ts: etna.datasets.tsdataset.TSDataset, start_timestamp: Optional[pandas._libs.tslibs.timestamps.Timestamp] = None, end_timestamp: Optional[pandas._libs.tslibs.timestamps.Timestamp] = None, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) etna.datasets.tsdataset.TSDataset [source]¶
Make in-sample predictions on dataset in a given range.
Currently, in situation when segments start with different timestamps we only guarantee to work with
start_timestamp
>= beginning of all segments.- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset to make predictions on.
start_timestamp (Optional[pandas._libs.tslibs.timestamps.Timestamp]) – First timestamp of prediction range to return, should be >= than first timestamp in
ts
; expected that beginning of each segment <=start_timestamp
; if isn’t set the first timestamp where each segment began is taken.end_timestamp (Optional[pandas._libs.tslibs.timestamps.Timestamp]) – Last timestamp of prediction range to return; if isn’t set the last timestamp of
ts
is taken. Expected that value is less or equal to the last timestamp ints
.prediction_interval (bool) – If True returns prediction interval for forecast.
quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% taken to form a 95% prediction interval.
return_components (bool) – If True additionally returns forecast components
- Returns
Dataset with predictions in
[start_timestamp, end_timestamp]
range.- Raises
ValueError: – Value of
end_timestamp
is less thanstart_timestamp
.ValueError: – Value of
start_timestamp
goes before point where each segment started.ValueError: – Value of
end_timestamp
goes after the last timestamp.
- Return type