SklearnRegressionPerIntervalModel¶
- class SklearnRegressionPerIntervalModel(model: Optional[sklearn.base.RegressorMixin] = None)[source]¶
Bases:
etna.transforms.decomposition.change_points_based.per_interval_models.base.PerIntervalModel
SklearnRegressionPerIntervalModel applies PerIntervalModel interface for sklearn-like regression models.
Init SklearnPerIntervalModel.
- Parameters
model (Optional[sklearn.base.RegressorMixin]) – model with sklearn interface to use for interval processing
- Inherited-members
Methods
fit
(features, target, *args, **kwargs)Fit model with given features and targets.
predict
(features, *args, **kwargs)Make prediction for given features.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
- fit(features: numpy.ndarray, target: numpy.ndarray, *args, **kwargs) etna.transforms.decomposition.change_points_based.per_interval_models.sklearn_based.SklearnRegressionPerIntervalModel [source]¶
Fit model with given features and targets.
- Parameters
features (numpy.ndarray) – features to fit model with
target (numpy.ndarray) – targets to fit model
- Returns
fitted SklearnRegressionPerIntervalModel
- Return type
self