StatisticsPerIntervalModel

class StatisticsPerIntervalModel(statistics_function: Callable[[numpy.ndarray], float])[source]

Bases: etna.transforms.decomposition.change_points_based.per_interval_models.base.PerIntervalModel

StatisticsPerIntervalModel gets statistics from series and use them for prediction.

Init StatisticsPerIntervalModel.

Parameters

statistics_function (Callable[[numpy.ndarray], float]) – function to compute statistics from series

Inherited-members

Methods

fit(features, target, *args, **kwargs)

Fit statistics from given target.

predict(features, *args, **kwargs)

Build prediction from precomputed statistics.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

fit(features: numpy.ndarray, target: numpy.ndarray, *args, **kwargs) etna.transforms.decomposition.change_points_based.per_interval_models.statistics_based.StatisticsPerIntervalModel[source]

Fit statistics from given target.

Parameters
  • features (numpy.ndarray) – features of the series, will be ignored

  • target (numpy.ndarray) – target to compute statistics for

Returns

fitted StatisticsPerIntervalModel

Return type

self

predict(features: numpy.ndarray, *args, **kwargs) numpy.ndarray[source]

Build prediction from precomputed statistics.

Parameters

features (numpy.ndarray) – features to build prediction for

Returns

array of features len filled with statistics value

Return type

prediction