OutliersTransform

class OutliersTransform(in_column: str)[source]

Bases: etna.transforms.base.ReversibleTransform, abc.ABC

Finds outliers in specific columns of DataFrame and replaces it with NaNs.

Create instance of OutliersTransform.

Parameters

in_column (str) – name of processed column

Inherited-members

Methods

detect_outliers(ts)

Call function for detection outliers with self parameters.

fit(ts)

Fit the transform.

fit_transform(ts)

Fit and transform TSDataset.

get_regressors_info()

Return the list with regressors created by the transform.

inverse_transform(ts)

Inverse transform TSDataset.

load(path)

Load an object.

params_to_tune()

Get grid for tuning hyperparameters.

save(path)

Save the object.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

transform(ts)

Transform TSDataset inplace.

abstract detect_outliers(ts: etna.datasets.tsdataset.TSDataset) Dict[str, List[pandas._libs.tslibs.timestamps.Timestamp]][source]

Call function for detection outliers with self parameters.

Parameters

ts (etna.datasets.tsdataset.TSDataset) – dataset to process

Returns

dict of outliers in format {segment: [outliers_timestamps]}

Return type

Dict[str, List[pandas._libs.tslibs.timestamps.Timestamp]]

get_regressors_info() List[str][source]

Return the list with regressors created by the transform.

Returns

List with regressors created by the transform.

Return type

List[str]