ElasticPerSegmentModel

class ElasticPerSegmentModel(alpha: float = 1.0, l1_ratio: float = 0.5, fit_intercept: bool = True, **kwargs)[source]

Bases: etna.models.mixins.PerSegmentModelMixin, etna.models.mixins.NonPredictionIntervalContextIgnorantModelMixin, etna.models.base.NonPredictionIntervalContextIgnorantAbstractModel

Class holding per segment sklearn.linear_model.ElasticNet.

Notes

Target components are formed as the terms from linear regression formula.

Create instance of ElasticNet with given parameters.

Parameters
  • alpha (float) – Constant that multiplies the penalty terms. Defaults to 1.0. alpha = 0 is equivalent to an ordinary least square, solved by the LinearRegression object. For numerical reasons, using alpha = 0 with the Lasso object is not advised. Given this, you should use the LinearPerSegmentModel object.

  • l1_ratio (float) –

    The ElasticNet mixing parameter, with 0 <= l1_ratio <= 1.

    • For l1_ratio = 0 the penalty is an L2 penalty.

    • For l1_ratio = 1 it is an L1 penalty.

    • For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.

  • fit_intercept (bool) – Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e. data is expected to be centered).

Inherited-members

Methods

fit(ts)

Fit model.

forecast(ts[, return_components])

Make predictions.

get_model()

Get internal models that are used inside etna class.

load(path)

Load an object.

params_to_tune()

Get default grid for tuning hyperparameters.

predict(ts[, return_components])

Make predictions with using true values as autoregression context if possible (teacher forcing).

save(path)

Save the object.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

Attributes

context_size

Context size of the model.

params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution][source]

Get default grid for tuning hyperparameters.

Returns

Grid to tune.

Return type

Dict[str, etna.distributions.distributions.BaseDistribution]