LinearMultiSegmentModel¶
- class LinearMultiSegmentModel(fit_intercept: bool = True, **kwargs)[source]¶
Bases:
etna.models.mixins.MultiSegmentModelMixin
,etna.models.mixins.NonPredictionIntervalContextIgnorantModelMixin
,etna.models.base.NonPredictionIntervalContextIgnorantAbstractModel
Class holding
sklearn.linear_model.LinearRegression
for all segments.Notes
Target components are formed as the terms from linear regression formula.
Create instance of LinearModel with given parameters.
- Parameters
fit_intercept (bool) – Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e. data is expected to be centered).
- Inherited-members
Methods
fit
(ts)Fit model.
forecast
(ts[, return_components])Make predictions.
get_model
()Get internal model that is used inside etna class.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
predict
(ts[, return_components])Make predictions with using true values as autoregression context if possible (teacher forcing).
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
context_size
Context size of the model.
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]