LinearMultiSegmentModel

class LinearMultiSegmentModel(fit_intercept: bool = True, **kwargs)[source]

Bases: etna.models.mixins.MultiSegmentModelMixin, etna.models.mixins.NonPredictionIntervalContextIgnorantModelMixin, etna.models.base.NonPredictionIntervalContextIgnorantAbstractModel

Class holding sklearn.linear_model.LinearRegression for all segments.

Notes

Target components are formed as the terms from linear regression formula.

Create instance of LinearModel with given parameters.

Parameters

fit_intercept (bool) – Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e. data is expected to be centered).

Inherited-members

Methods

fit(ts)

Fit model.

forecast(ts[, return_components])

Make predictions.

get_model()

Get internal model that is used inside etna class.

load(path)

Load an object.

params_to_tune()

Get default grid for tuning hyperparameters.

predict(ts[, return_components])

Make predictions with using true values as autoregression context if possible (teacher forcing).

save(path)

Save the object.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

Attributes

context_size

Context size of the model.

params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution][source]

Get default grid for tuning hyperparameters.

Returns

Grid to tune.

Return type

Dict[str, etna.distributions.distributions.BaseDistribution]