NaiveModel

class NaiveModel(lag: int = 1)[source]

Bases: etna.models.seasonal_ma.SeasonalMovingAverageModel

Naive model predicts t-th value of series with its (t - lag) value.

\[y_{t} = y_{t-s},\]

where \(s\) is lag.

Notes

This model supports in-sample and out-of-sample prediction decomposition. Prediction component here is the corresponding target lag.

Init NaiveModel.

Parameters

lag (int) – lag for new value prediction

Inherited-members

Methods

fit(ts)

Fit model.

forecast(ts, prediction_size[, ...])

Make autoregressive forecasts.

get_model()

Get internal model.

load(path)

Load an object.

params_to_tune()

Get default grid for tuning hyperparameters.

predict(ts, prediction_size[, return_components])

Make predictions using true values as autoregression context (teacher forcing).

save(path)

Save the object.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

Attributes

context_size

Context size of the model.

params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution][source]

Get default grid for tuning hyperparameters.

This grid is empty.

Returns

Grid to tune.

Return type

Dict[str, etna.distributions.distributions.BaseDistribution]