StatsForecastAutoARIMAModel¶
- class StatsForecastAutoARIMAModel(d: Optional[int] = None, D: Optional[int] = None, max_p: int = 5, max_q: int = 5, max_P: int = 2, max_Q: int = 2, max_order: int = 5, max_d: int = 2, max_D: int = 1, start_p: int = 2, start_q: int = 2, start_P: int = 1, start_Q: int = 1, season_length: int = 1, **kwargs)[source]¶
Bases:
etna.models.mixins.PerSegmentModelMixin
,etna.models.mixins.PredictionIntervalContextIgnorantModelMixin
,etna.models.base.PredictionIntervalContextIgnorantAbstractModel
Class for holding
statsforecast.models.AutoARIMA
.Documentation for the underlying model.
Init model with given params.
- Parameters
d (Optional[int]) – Order of first-differencing.
D (Optional[int]) – Order of seasonal-differencing.
max_p (int) – Max autorregresives p.
max_q (int) – Max moving averages q.
max_P (int) – Max seasonal autorregresives P.
max_Q (int) – Max seasonal moving averages Q.
max_order (int) – Max p+q+P+Q value if not stepwise selection.
max_d (int) – Max non-seasonal differences.
max_D (int) – Max seasonal differences.
start_p (int) – Starting value of p in stepwise procedure.
start_q (int) – Starting value of q in stepwise procedure.
start_P (int) – Starting value of P in stepwise procedure.
start_Q (int) – Starting value of Q in stepwise procedure.
season_length (int) – Number of observations per unit of time. Ex: 24 Hourly data.
**kwargs – Additional parameters for
statsforecast.models.AutoARIMA
.
- Inherited-members
Methods
fit
(ts)Fit model.
forecast
(ts[, prediction_interval, ...])Make predictions.
get_model
()Get internal models that are used inside etna class.
load
(path)Load an object.
params_to_tune
()Get grid for tuning hyperparameters.
predict
(ts[, prediction_interval, ...])Make predictions with using true values as autoregression context if possible (teacher forcing).
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
context_size
Context size of the model.