DeseasonalityTransform¶
- class DeseasonalityTransform(in_column: str, period: int, model: Literal['additive', 'multiplicative'] = 'additive')[source]¶
Bases:
etna.transforms.base.ReversiblePerSegmentWrapper
Transform that uses
statsmodels.tsa.seasonal.seasonal_decompose()
to subtract seasonal component from the data.Warning
This transform can suffer from look-ahead bias. For transforming data at some timestamp it uses information from the whole train part.
Init DeseasonalityTransform.
- Parameters
in_column (str) – name of processed column
period (int) – size of seasonality
model (Literal['additive', 'multiplicative']) – ‘additive’ (Y[t] = T[t] + S[t] + e[t], default option) or ‘multiplicative’ (Y[t] = T[t] * S[t] * e[t])
- Inherited-members
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
inverse_transform
(ts)Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
- get_regressors_info() List[str] [source]¶
Return the list with regressors created by the transform.
- Return type
List[str]
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
This grid tunes parameters:
model
. Other parameters are expected to be set by the user.- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]