LagTransform

class LagTransform(in_column: str, lags: Union[List[int], int], out_column: Optional[str] = None)[source]

Bases: etna.transforms.base.IrreversibleTransform, etna.transforms.base.FutureMixin

Generates series of lags from given dataframe.

Create instance of LagTransform.

Parameters
  • in_column (str) – name of processed column

  • lags (Union[List[int], int]) – int value or list of values for lags computation; if int, generate range of lags from 1 to given value

  • out_column (Optional[str]) –

    base for the name of created columns;

    • if set the final name is ‘{out_column}_{lag_number}’;

    • if don’t set, name will be transform.__repr__(), repr will be made for transform that creates exactly this column

Raises

ValueError: – if lags value contains non-positive values

Inherited-members

Methods

fit(ts)

Fit the transform.

fit_transform(ts)

Fit and transform TSDataset.

get_regressors_info()

Return the list with regressors created by the transform.

inverse_transform(ts)

Inverse transform TSDataset.

load(path)

Load an object.

params_to_tune()

Get grid for tuning hyperparameters.

save(path)

Save the object.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

transform(ts)

Transform TSDataset inplace.

get_regressors_info() List[str][source]

Return the list with regressors created by the transform.

Return type

List[str]