SpecialDaysTransform

class SpecialDaysTransform(find_special_weekday: bool = True, find_special_month_day: bool = True)[source]

Bases: etna.transforms.base.IrreversiblePerSegmentWrapper, etna.transforms.base.FutureMixin

SpecialDaysTransform generates series that indicates is weekday/monthday is special in given dataframe.

Creates columns ‘anomaly_weekdays’ and ‘anomaly_monthdays’.

Warning

This transform can suffer from look-ahead bias. For transforming data at some timestamp it uses information from the whole train part.

Create instance of SpecialDaysTransform.

Parameters
  • find_special_weekday (bool) – flag, if True, find special weekdays in transform

  • find_special_month_day (bool) – flag, if True, find special monthdays in transform

Raises

ValueError: – if all the modes are False

Inherited-members

Methods

fit(ts)

Fit the transform.

fit_transform(ts)

Fit and transform TSDataset.

get_regressors_info()

Return the list with regressors created by the transform.

inverse_transform(ts)

Inverse transform TSDataset.

load(path)

Load an object.

params_to_tune()

Get default grid for tuning hyperparameters.

save(path)

Save the object.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

transform(ts)

Transform TSDataset inplace.

get_regressors_info() List[str][source]

Return the list with regressors created by the transform.

Return type

List[str]

params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution][source]

Get default grid for tuning hyperparameters.

This grid tunes parameters: find_special_weekday, find_special_month_day. Other parameters are expected to be set by the user.

There are no restrictions on all False values for the flags.

Returns

Grid to tune.

Return type

Dict[str, etna.distributions.distributions.BaseDistribution]