TimeSeriesImputerTransform¶
- class TimeSeriesImputerTransform(in_column: str = 'target', strategy: str = ImputerMode.constant, window: int = - 1, seasonality: int = 1, default_value: Optional[float] = None, constant_value: float = 0)[source]¶
Bases:
etna.transforms.base.ReversibleTransform
Transform to fill NaNs in series of a given dataframe.
It is assumed that given series begins with first non NaN value.
This transform can’t fill NaNs in the future, only on train data.
This transform can’t fill NaNs if all values are NaNs. In this case exception is raised.
Warning
This transform can suffer from look-ahead bias in ‘mean’ mode. For transforming data at some timestamp it uses information from the whole train part.
Create instance of TimeSeriesImputerTransform.
- Parameters
in_column (str) – name of processed column
strategy (str) –
filling value in missing timestamps:
If “mean”, then replace missing dates using the mean in fit stage.
If “running_mean” then replace missing dates using mean of subset of data
If “forward_fill” then replace missing dates using last existing value
If “seasonal” then replace missing dates using seasonal moving average
If “constant” then replace missing dates using constant value.
window (int) –
In case of moving average and seasonality.
If
window=-1
all previous dates are taken in accountOtherwise only window previous dates
seasonality (int) – the length of the seasonality
default_value (Optional[float]) – value which will be used to impute the NaNs left after applying the imputer with the chosen strategy
constant_value (float) – value to fill gaps in “constant” strategy
- Raises
ValueError: – if incorrect strategy given
- Inherited-members
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
inverse_transform
(ts)Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
- get_regressors_info() List[str] [source]¶
Return the list with regressors created by the transform.
- Return type
List[str]
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
This grid tunes parameters:
strategy
,window
. Other parameters are expected to be set by the user.Strategy “seasonal” is suggested only if
self.seasonality
is set higher than 1.- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]